光纖布拉格光柵的點(diǎn)式光纖傳感器
光學(xué)應變傳感器(或應變儀)是用于壓縮和/或拉伸機械應變(變形)的傳感器,這些傳感器基于光學(xué)技術(shù)-在大多數情況下基于光纖。它們可以基于不同的操作原理,如下所述。
注意,機械應變是由機械力引起的。因此,應變傳感還可以提供有關(guān)機械力或壓力的信息。
存在替代技術(shù),例如機械和電子應變傳感器。但是,光學(xué)應變傳感器可以提供重要的優(yōu)勢。例如,它們可以在很寬的溫度范圍內運行,對電磁干擾不敏感,并且它們不需要電纜(這對于某些需要使用絕緣材料的高壓應用很重要)。它們也適用于高帶寬的動(dòng)態(tài)測量。參見(jiàn)下面有關(guān)光學(xué)應變傳感器應用的段落。
光學(xué)應變傳感器的工作原理
基于光纖布拉格光柵的點(diǎn)式光纖傳感器
許多用于測量應變的光纖傳感器都是基于光纖布拉格光柵(FBG)。該操作原理主要基于以下事實(shí):施加到這種光柵上的應變會(huì )影響光柵周期,從而影響布拉格波長(cháng),即峰值反射率的波長(cháng)。所引起的應變的變化的布拉格波長(cháng)的變化ε和溫度變化Δ??是[2]:
除了應變的純粹幾何效應(傳感器的伸長(cháng),增加光柵周期)外,還有一種折射率變化引起的效應,它取決于應力光張量的普克爾斯系數和泊松比ν。本質(zhì)上,應變減小了折射率,并且在某種程度上減小了增加的光柵周期的影響。對于二氧化硅纖維,減少量約等于22%。
使用光電查詢(xún)器,該光電查詢(xún)器將光發(fā)送到光柵傳感器并分析反射光以確定應變量。例如,外腔二極管激光器適合作為光源。
為了測量機械構件的應變,例如在建筑物中,需要將基于FBG的傳感器連接到該構件,以使其受到相同的應變。一些表面應變傳感器粘在平坦或有些彎曲的表面上。在其他情況下,可以使用其他連接傳感器的方法,例如點(diǎn)焊,擰緊或通過(guò)將傳感器的零件嵌入混凝土結構中。
一個(gè)挑戰是這種光柵的布拉格波長(cháng)也對溫度變化敏感。對于二氧化硅纖維,溫度變化1 K大致對應于應變變化10με。有多種溫度補償方法:
- 一個(gè)人可以使用第二個(gè)光柵,該光柵暴露在相同的溫度下,但沒(méi)有受到機械應變。
- 在某些情況下,可以采用推挽配置的另一種技術(shù),其中一個(gè)光柵在另一光柵被拉伸時(shí)被壓縮。然后,兩個(gè)布拉格波長(cháng)之間的差異會(huì )對應變產(chǎn)生反應,而對溫度沒(méi)有反應。
- 可以使用附加的溫度傳感器測量溫度,并使用已知的光柵溫度系數校正應變測量值。
- 一個(gè)人可能使用兩種非常不同的詢(xún)問(wèn)波長(cháng)(例如在0.8-μm和1.5-μm區域),從而導致應變和溫度響應的比率不同。
另一方面,通過(guò)光波長(cháng)的應變編碼使得這種傳感器對其他參數不敏感,例如沿著(zhù)光纖的光功率損失或詢(xún)問(wèn)器的輸出功率。
對于某些應用,應變和溫度都是測量值。
基于FBG的應變傳感器的分辨率可以?xún)?yōu)于1με(即,相對長(cháng)度變化小于10?-6),并且精度可能不會(huì )低很多。例如,可以測量由1 K或更小的溫度變化引起的熱膨脹。同時(shí),允許的測量范圍可以是±20.000με=±2%。動(dòng)態(tài)范圍因此可以大于40 dB。
對于具有高帶寬的動(dòng)態(tài)應變傳感(例如,用于研究聲學(xué)現象),可以使用更快的檢測方案,例如,使用不平衡的馬赫曾德?tīng)柟饫w干涉儀,它將波長(cháng)變化轉換為光功率的變化。在1 Hz的帶寬內,靈敏度可大大優(yōu)于1nε。
準分布式傳感器
基于FBG的傳感器技術(shù)的一個(gè)非常吸引人的特征是,可以在一根長(cháng)光纖中制造帶有許多這樣的光柵的準分布式傳感器,并使用單個(gè)詢(xún)問(wèn)器,該詢(xún)問(wèn)器可以通過(guò)某種復用來(lái)處理所有不同的光柵。來(lái)自不同光柵的信號可以通過(guò)不同的方式進(jìn)行區分:
- 詢(xún)問(wèn)器可以發(fā)出光脈沖(例如,具有納秒或皮秒的持續時(shí)間)并監視信號的到達時(shí)間(時(shí)分多路復用,TDM),由于光柵之間的光纖傳播時(shí)間延遲,信號的到達時(shí)間不同。
- 替代地,不同的光柵可以具有不同的布拉格波長(cháng),從而可以通過(guò)將詢(xún)問(wèn)激光器調諧到其波長(cháng)來(lái)對每個(gè)光柵進(jìn)行尋址(波分復用,WDM)。除了激光器以外,還可以將寬帶光源(例如,超發(fā)光二極管)與某種光譜儀結合使用,例如與可調Fabry-Pérot濾波器或基于衍射光柵和CCD傳感器陣列的設備結合使用。
還可以結合兩種技術(shù)來(lái)實(shí)現包含更多點(diǎn)傳感器(可能超過(guò)100個(gè))的WDM / TDM系統。
與使用許多獨立傳感器相比,這種多點(diǎn)傳感器的成本可以低得多,因為簡(jiǎn)化了傳感器和電纜的安裝,并且可以使用單個(gè)詢(xún)問(wèn)器。
干涉式光纖布拉格光柵傳感器
在某些情況下,人們使用一對構成法布里-珀羅干涉儀的布拉格光柵,其中一個(gè)通過(guò)諧振頻率的偏移來(lái)測量光柵之間的光纖應變。當使用具有不同布拉格波長(cháng)的光柵時(shí),可以在一根光纖中再次使用該類(lèi)型的多個(gè)傳感器?;蛘?,可以測量一根長(cháng)纖維的平均應變。
基于微法布里-珀羅茲的傳感器
可以構造小型Fabry-Pérot干涉儀,其中小的反射鏡距離(例如50μm)受待測應變的影響。因此,峰值透射波長(cháng)將指示施加的應變。代替傳輸,可以監視共振中反射率的下降。探測光結束后,反射光可以通過(guò)單模光纖傳輸,以提供最大的便利。由于光纖僅用于傳輸光,而不用于實(shí)際的傳感器,因此該技術(shù)稱(chēng)為非本征光纖傳感器,這與光纖本身充當傳感器的固有傳感器相反。
Micro-Fabry–Pérot可以通過(guò)不同的方式生產(chǎn),例如,通過(guò)在兩個(gè)光纖末端之間保持一定的機械部件(例如微管)之間的氣隙,或使用兩個(gè)具有反射性的熔接頭,例如在絕緣膜上涂覆電介質(zhì)涂層。光纖末端。
可以使Micro-Fabry–Pérot傳感器在比基于FBG的傳感器(可能會(huì )發(fā)生光柵退火)的更高溫度下工作。它們還可以提供非常高的應變分辨率。另一方面,在單個(gè)光纖中不容易使用該類(lèi)型的多個(gè)傳感器。
基于瑞利散射的分布式應變傳感器
分布式光纖應變傳感器可以用普通的單模光纖實(shí)現,不包含任何特殊結構,例如光纖布拉格光柵。在許多情況下,人們使用在1.5微米光譜范圍內運行的電信光纖。
一種可能性是利用光纖中的瑞利散射。這是線(xiàn)性散射,這是由于光纖中的微觀(guān)變化所致,主要是折射率的波動(dòng)。與采用非線(xiàn)性散射的其他技術(shù)(請參閱下文)相比,該技術(shù)可獲得更強的信號,并且可以獲得較高的空間分辨率(例如幾毫米)。
可以使用干涉技術(shù)來(lái)分析背向散射光。本質(zhì)上,一個(gè)是將來(lái)自光纖的反射光與其他來(lái)自發(fā)出光的光疊加在一起。如果僅在光纖中的特定位置發(fā)生反射,則干涉儀的輸出將大約隨光頻率周期性變化探照燈?振蕩的速度取決于反射的位置。通過(guò)應用傅立葉變換,可以將干涉儀信號分解為來(lái)自不同位置的反射的貢獻。這也可以通過(guò)基于隨機分布位置處的瑞利散射的反射來(lái)完成。當被測光纖拉緊時(shí),獲得的信號模式會(huì )移動(dòng),可以使用合適的軟件進(jìn)行檢測。
該技術(shù)特別適合于以高空間分辨率但僅在有限的長(cháng)度(例如幾十米)上監視應變。
基于布里淵散射的分布式應變傳感器
對于較長(cháng)纖維的應變傳感,通常使用基于自發(fā)或受激布里淵散射的技術(shù)。例如,皮秒光脈沖從一個(gè)方向發(fā)送到光纖中,并且通過(guò)光學(xué)外差檢測分析了由于自發(fā)布里淵散射引起的相當弱的反射分量。布里淵頻移取決于應變和溫度,而空間分辨率可以通過(guò)時(shí)間延遲獲得。
可以使用基于受激布里淵散射的技術(shù)(稱(chēng)為布里淵光學(xué)時(shí)延分析)來(lái)實(shí)現更高的靈敏度。(BOTDA)。在此,使用了一個(gè)附加的弱連續波探測光束,該探測光束在與皮秒脈沖相反的方向上傳播。選擇其光頻率略低于脈沖頻率。然后,在脈沖和探測光束之間的光頻差與局部布里淵位移(取決于應變和溫度)一致的位置處放大探測光束。(或者,當探測光束的頻率高于脈沖頻率時(shí),可以獲得非線(xiàn)性損失。)以可變的光學(xué)頻率差進(jìn)行這種測量,并且通過(guò)組合這些數據,可以有效地獲得布里淵圖。頻率與位置
這種技術(shù)的空間分辨率不如使用瑞利散射時(shí)高。另一方面,可以將它們與更長(cháng)的纖維結合使用-長(cháng)度通常超過(guò)10公里。因此,它們特別適用于例如管道監控之類(lèi)的應用。
再次需要用于分離應變和溫度影響的技術(shù)。如上文在光纖光柵傳感器的背景下討論的,可以應用類(lèi)似的思想。例如,一根纖維可以使用兩根暴露在相同溫度下的纖維,而一根纖維也可以感知應變,而另一根纖維則保持松弛。
光學(xué)應變傳感器的應用
光學(xué)應變傳感器的典型應用是監視技術(shù)基礎設施,例如橋梁,隧道,礦山,建筑物,石油和天然氣管道,輸電線(xiàn)路,工業(yè)加工廠(chǎng),飛機和風(fēng)能轉換器的葉片。結構健康監測可以提高安全性,并使傳統的監測方法過(guò)時(shí),從而節省了成本。用長(cháng)光纖進(jìn)行分布式傳感的能力通常也很重要。有時(shí),人們從同時(shí)測量溫度中獲利。
應變傳感器在技術(shù)開(kāi)發(fā)過(guò)程中也非常有用,例如在疲勞測試中,在受控條件下零件要承受高水平的應變。此類(lèi)測試對于保證正常運行條件下的可靠性至關(guān)重要。